
Measurement of AMR Self-Gravity Parallel

Performance

P. Colella
D. F. Martin
N. D. Keen

F. Miniati

Applied Numerical Algorithms Group

NERSC Division
Lawrence Berkeley National Laboratory

Berkeley, CA

October 19, 2005



The target platform for this benchmark measurement is a machine named Halem
located at GSFC. Halem is the NCCS Compaq AlphaServer SC45 System which consists
of 104 symmetric multiprocessor nodes (4 processors per node). Memory is shared within
a node.

The Fortran compiler used for this was the native Fortran compiler f77 with the -fast
optimization flag. The C++ compiler used was the GNU g++ compiler (version 3.3.1)
with flags -O2 -ftemplate-depth-27.

The inputs files used for these benchmarks may be found in the AMRSelfGravity
download tarfile, in the Chombo/example/AMRSelfGravity/exec/ directory; the
selfGravityBenchmark64.inputs file was used for the 64 × 64 × 64 case, while the
selfGravityBenchmark128.inputs file was used for the 128 × 128 × 128 case. The
input used for the runs (for the 64 × 64 × 64 case) is presented in Figure 1.

Table 1 shows the two sizes of benchmark problems used including the respective
tagging factor for the cell mass, while Table 2 shows the total number of points updated
for each run. In all of the benchmark runs, 15 coarse-level timesteps are completed. The
cell mass threshold used for refinement scales by (∆x)D where D is the dimensionality of
the problem and. In particular, as the cell spacing is halved, the threshold is reduced by
a factor of 8 in three dimensions. Because the dust-collapse problem is very dynamic in
structure, we also double the CFL number as we halve the cell spacing, in order to keep
the solutions roughly equivalent at each timestep.

Problem size Cell-mass Threshold CFL number
Factor

64x64x64 1.5e-7 0.25
128x128x128 1.9e-8 0.50

Table 1: Baseline Problem Data

Level 64x64x64 128x128x128
0 393216 31457280
1 2277376 10395648
2 11214848 63078400

totals 17424384 104931328

Table 2: Number of Points Updated Per AMR Level for each Problem Size

The parallel performance of the AMR self-gravity code is summarized in Table 3. As
we double the linear size of the problem, the computational size of the problem increases
by a factor of 8 in 3-dimensions. So, we can compute scaled efficiency by comparing the
run time between two runs which differ by a factor of 2 in base grid size, and a factor

1



charm.problem = dustcollapse

charm.cloud_density= 1.00

charm.cloud_radius = 0.125 # 0.0625

charm.verbosity = 3

charm.max_step = 15

charm.max_time = 10000000.0

charm.domain_length = 1.0

charm.num_cells = 64 64 64

charm.is_periodic = 0 0 0 # 0= non-periodic

charm.max_level = 2

charm.max_init_ref_level = 2

charm.ref_ratio = 2 2 2 2 2 2 2 2

charm.regrid_interval = 4 4 4 4 4 4 4 4

charm.tag_buffer_size = 2

charm.block_factor = 8

charm.max_grid_size = 32

charm.fill_ratio = 0.8

charm.use_gradient_refine = 0

charm.use_num_part_refine = 0

charm.use_shock_refine = 0

charm.use_over_dense_refine= 1

charm.use_jeans_refine = 0

charm.cell_mass_thresh = 1.5e-7 # = rho*dx^Dim = 3.8e-6*rho *(64/nx)^3

charm.gamma = 1.6666666666667

charm.use_fourth_order_slopes = 0

charm.use_prim_limiting = 1

charm.use_char_limiting = 0

charm.use_flattening = 0

charm.use_artificial_viscosity = 0

charm.artificial_viscosity = 0.2

charm.normal_predictor = PLM

charm.checkpoint_interval = -1

charm.plot_interval = 0

charm.cfl = 0.250

charm.initial_cfl = 0.25

charm.max_dt_growth = 1.10

charm.dt_tolerance_factor = 1.10

charm.rs_tolerance = 1.e-6

charm.max_rs_iter = 10

charm.max_mach = 50

charm.bc_lo = 3 3 3 #bcs for lo faces 0==dirc, 1==neumann, 2==inf bc, 3==gauss

charm.bc_hi = 3 3 3 #bcs for hi faces 0==dirc, 1==neumann, 2==inf bc, 3==gauss

charm.force_stencil = 0

charm.use_delta_phi_corr = 1 # 1=true; 0=false

Figure 1: Input file for 64 × 64 × 64 case

2



of 8 in number of processors. These are shown in Table 4. As can be seen, the scaled
efficiencies computed range from 0.71 (71%) to 0.97.

Prob size Num AMR Run Avg Memory Min-Max mem
Procs secs MB MB

64x64x64 01 1032.8 382 382-382
64x64x64 02 536.99 254 251-257
64x64x64 04 301.42 171 167-176
64x64x64 08 175.96 121 118-122

128x128x128 08 964.59 396 363-414
128x128x128 16 552.00 246 234-266
128x128x128 32 421.44 161 148-177
128x128x128 64 487.53 114 102-128

Table 3: Current parallel performance of AMR self-gravity code for baseline dust collapse
problem

Base Problem Num Large Problem Large num Scaled
Size Procs Size processors Efficiency

64x64x64 1 128x128x128 8 1.07
2 16 0.973
4 32 0.715

Table 4: Scaled Efficiencies computed from Table 3

3


